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INTRODUCTION 

The contents of this Technical Report was prepared for publication in 

Technometrics to accompany papers by Gwilym Jenkins (l) and Emanuel Parzen (2) 

which formed the core of a discussion of spectral analysis of time series for 

statisticians at the Stanford meeting in August i960.  The present account is 

based on an oral contribution to that discussion, but extends the treatment in 

a number of directions. 

It is hoped that it will serve as a sueful introduction to statisticians 

wishing to acquire a better understanding of spectral analysis. 

John Tukey 

(1) Gwilym M. Jenkins I96I, "General Considerations in the Analysis of Spectra", 

to appear in Technometrics. 

(2) Emanuel Parzen I96I, "Mathematical Considerations in the Estimation of 

Spectra", to appear In Technometrics. 



This session was to be expository and to be 

directed to statisticians.  Accordingly, the discussants 

have a responsibility to provide such comments as may tend 

to make both the two papers and the general subject more 

understandable to statisticians, particularly by relating 

spectrum analysis to statistical techniques and to fields 

of application more widely familiar to them.  Fortunately, 

the connection between spectrum analysis and those aspects 

of the analysis of variance which emphasize variance com- 

ponents is extremely close. 

One essential in this close connection Is that, 

as emphasized by Jenkins, all practical time series problems 

can be treated as If time were discrete and the available 

data came at equally-spaced intervals.  Since most problems 

can also be treated as If time were continuous, there will 

be little need for us to distinguish continuous time from 

equl-spaced discrete time.  When we come to computation, 

time always can, and usually will, be discrete. 

To make this connection evident, however, we 

shall have to analyze the implications and foundations of 

our procedures and thinking in classical analysis of 

variance more deeply than usual.  It is fair to say that 

the spectrum analysis of a single time series is Just a 

branch of variance component analysis, but only if one 



describes Its main difference from the classical branches 

as a requirement for explicit recognition of what Is being 

done and why.  In classical (i.e. single-response analysls- 

of-variance) variance component analysis, one can (and 

most of us do) analyze data quite freely and understandingly 

with little thought about what Is being done and why It Is 

being done.  This Is, perhaps unfortunately, not the case 

for the time series analysis branch of variance component 

analysis. 

VARIANCE COMPONENTS AND SPECTRUM ANALYSIS 

When variance components? 

When conducting analyses of data In conventional 

analysis-of-varlance patterns, we sometimes pay attention 

to individual values of main effects. Interactions, and 

the likeo  At other times, we pay attention to estimates 

of variance components.  The controlling factor in this 

choice is the character of the sets of data which would be 

considered to be other realizations of the same experiment 

(or of the same patterned observation).  Thus, If we were 

comparing the times taken by the five outstanding runners 

of the world to run 1500 meters, another realization of 

the experiment would reasonably Involve the same runners. 



and it would be appropriate to pay attention to individual 

main effects.  If, however, we were considering the speeds 

for a standard assembly operation as shown by five 

assemblers drawn at random from a pool of 250 assemblers 

in a large factory, another realization of the same 

experiment would almost certainly involve a different group 

of assemblers,  since our, concern would have been with 

assemblers as a whole, rather than with 5 particular 

assemblers.  Consequently, in analyzing such data, we 

would pay attention to the estimated variance component 

for assemblers.  (We are here concerned with the direct 

issue of what aspect of the classification concerned re- 

ceives attention, not with the indirect, but perhaps 

equally important, issue of how the ch&racter of this 

classification affects the proper error term for other 

main effects -- the question sometimes discussed in terms 

of "fixed, mixed, or random models".)  There is a clear 

analog to this choice in the Fourier-oriented analysis 

of time series. 

Let us first consider the case of a function of 

time which Is periodic with known period.  If we may choose 

the time unit for convenience, the period may as well be 

2ir,   and the function will then have (in practice) a Fourier 

series representation of the form 

y(t) = ao + 2J^aj G0S ^ + bj sln J*) 



Let us lay aside for the moment questions of errors of 

measurement, numbers of (and spacings between) times at 

which observations are made, and whether J has a finite 

or infinite range.  Since we are statisticians, concerned 

with a statistical problem, the coefficients a ,a ,b ,a ,b ,... 

are not to be thought of as constant, but rather as having 

some Joint distribution.  This Joint distribution reflects 

the functions corresponding to "all the realizations" of 

the same experiment or observational program.  At one ex- 

treme, the functions of time representing different reali- 

zations might all be very nearly the same.  If this is the 

case, then, given a single realization, it is clearly ap- 

propriate to concentrate our attention upon the estimated 

values of a^a^b-^a^b^ . . , .  This is, of course, the 

situation envisaged in classical harmonic analysis.  One 

opposite extreme, one which you may claim only a statistician 
pop 

would think of, occurs when there are parameters 0^, g'Z,   a , ... 

and the a's and b's are independent normal deviates with 

ave a0 = ave a^ = ave bj = 0, var a0 = g*,   var a = var b  = 0?/2, 

Given one realization of such an experiment, it is only reason- 

able to look at quadratic functions of the observations, and 
pop 

to regard them as telling us about QQ/ OI'   Op*... .  Speci- 

fically it is appropriate to look at a^a^ + b?,«|^ b^ , . . . 

and at certain linear combinations of these quantities.  in 

contrast to classical harmonic analysis, this sort of periodic- 

time-function problem is a variance component problem 



The model which lies behind the classical tests of 

significance In harmonic analysis, a line of development 

finally completed by Plsher [1929], Is an Incomplete mixture 

of the two we have Just described. In which 

observed (t) = y fixed (t) + y random it). 

In this decomposition the "fixed" component Is usually 

thought of as Involving only one, two, or perhaps three 

values of J, while, both most Importantly and most danger- 

ously, the "random" component Is thought of as having 
2 

a = 
2 

2 
= a = 

J 

2 
= a . 

Equality of the a*>   the analog for periodic 

functions of being a "white noise", is exactly what would 

hold If the "random" component consisted only of Independent 

(or merely uncorrelated) observational errors In observations 

equally spaced through (0, 27r) .  It Is also, unfortunately, 

exactly what Is most unlikely to occur In practice (for 

reasons to be discussed In a moment).  As a consequence, 

the practical applications of such "largest value against 

all the rest" tests of significance in harmonic analysis Is, 

to say the least, extremely limited.  (if only our estimates, 
2    2      2 a. + b., of a1 had more than two degrees of freedom, we could 



Improve the classical tests of significance by fitting some 

sort of reasonable dependence of a*  upon J, before proceeding 

to the construction of a significance test.  Even with only 

two degrees of freedom, some such replacement may be possible.) 

Thus, even In the case of periodic time functions, 

we have some situations which should be treated almost en- 

tirely In terms of means, others which should be treated 

entirely In terms of variance components, and still others 

where both descriptions should be used together. 

The character of time 

Time Is connected.  And functions of time reflect 

this fact In their structure, not only In the tendency 

toward continuity shown by Individual time functions, but 

even more obviously In the associated probability structures. 

When a time function Is wisely regarded as generated from 

constituents coming from different sources, as most are, 

the individual constituents are not likely to be "white 

noises,"  (Not even the measurement error constituent!) 

And, even more crucially, the processes by which these con- 

stituents are combined are not likely to treat different 

frequencies alike, so that even if the constituents were 

white noises, their resultant would not be one.  Both in the 

periodic case and the more usual and general case of a 

continuous spectrum, a random time functions is rarely a 

"white noise". 



Another characteristic of time Is that It Is 

quite frequently measured from an arbitrary origin.  To 

be sure. If the simple periodic case has an annual period, 

we may place the computing origin of time where we will, 

but that will not make 1 January and 1 July the same. 

But If we are examlng the harmonics of a 400-cycle 

electrical voltage, there Is no equally necessary or 

special relation between local time and 400-cycle time. 

In a repetition of the same experiment, the generator phase 

at zero local time may well be equally likely to have any 

value between 0 and 2ir.     And If this Is so, the situation 

Is a stationary one.  (This example may help to emphasize 

that statlonarlty Is a condition "across the ensemble", a 

condition relating one realization to another, a condition 

on a whole ensemble, that it is not a condition on single 

realizations, and, most specifically, is not a condition 

of steadiness within individual realizations.) 

Finally, phenomena in time are rarely periodic, 

(in fact, when examined under a microscope, no known 

phenomenon is precisely periodic.)  Consequently, an 

effective Fourier description of real phenomena can rarely 

be a periodic description.  We must allow all frequencies 

to contribute, and hence, as Jenkins has explained, must 

turn to a continuous spectrum. 
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The statistically vital contrast between situations 

appropriately describable by means and situations appropri- 

ately describable by variances continues here, as we should 

have expected.  The motions of a springboard from which a 

diver has just leaped require all frequencies for their 

description.  The motions following successive leaps by 

a single careful and precise diver will be relatively similar. 

They will, as a whole, probably be most appropriately described 

"by means", by a description of the typical time history of 

board motion.  But if no diver is present, if the spring- 

board is vibrating through a very small amplitude because 

the wind is blowing on the board and its supports, and because 

the ground Itself is vibrating because of vehicle traffic and 

factory machinery, the situation is likely to be quite dif- 

ferent.  The characteristics of this "noise-like" motion of 

the springboard which are.maintained from one realization 

to another are of the nature of variance components rather 

than means.  And of course (as when a big grasshopper Jumps 

off a small, wind-and-traffic-vlbrated springboard) there 

are intermediate situations whose description appropriately 

combines both means and variance components. 

Which variance components? 

Discussion has proceeded, up to this point, as 

though the statement of a problem automatically fixed a 

set of variance components.  When we think matters over 



carefully, we find that this is far from being the case. 

In an abstract problem, where only the pattern of the 

observations and the symmetries of their distribution are 

specified, without any indication of their interpretation 

or understanding, there is no unique set of variance com- 

ponents.  Instead there are many sets, each interconvertible 

by prescribable formulas into each other.  Abstractly, the 

best we can do is to say that any set of quantities such 

that each of the second moments (pure and mixed) of the 

observations can be expressed as a linear combination of 

the quantities of the set (together with, say, the square 

of the average of some general mean) can play the formal 

role of a system of variance components.  (if the quantities 

in some set do not behave like variances we might prefer 

to call them (together with the squared average) second- 

moment components rather than varianpe components, though " 

we shall not be concerned with this particular precision 

of language here.)  Still one set of variance components 

may be more convenient, and far more useful, than another. 

Why? 

Replicated double classifications 

If we examine one of the most classical patterns, 

a replicated double classification into rows and columns, 

we can learn why.  Let us, then, consider a classical 
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analysis of variance, based on a pattern involving d 

observations in each of the r-c cells formed by crossing 

r rows with c columns.  The analysis of variance break- 

down into sums of squares, degrees of freedom, and mean 

squares Is standard, as are the definitions of variance 

components.  The well-known formulas for the average values 

of mean squares are, if all population sizes are Infinite: 

ave {MS I rows/ = a2 + ^-o^c  + dc' a^ 

ave IMS | cols} = a2 + d-aHo + dr-aH 

ave IMS | int} = a2 + d'apC 

ave IMS | dup} = Q
2 

2        2 2 2 
Why did we choose a   ,   aRC,   ac  and aR as the variance com- 

ponents in terms of which we are to write out such formulas? 

We could for example, have used as variance components such 

average values of differences between differently related 

pairs of observations as, taking i ^ I, j   /  J,   k ^ K; 

aVe(yiJk-yiJK)2 

2 
•^Uk^UK5 
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ave(yljk-yiJK)2 

ave(y1Jk-yIJK)
2 

Before trying to answer these questions we must look back 

at some of the implications of the way in which they were 

asked. 

The term "variance component" can be, and is, 

appropriately used in two different senses.  These senses 

differ in effect, but only when the underlying situations 

differ, so that no contradictions arise.  When the under- 

lying situation is such that it is appropriate to consider 

means In the first instance (the pigeonhole model of Cornfield 

and Tukey 1956 includes such extreme examples), variance 

components are means over more specific quadratic quantities. 

In particular, the within-cell or "duplication" variance 

2 
component a is the average of the variances of all the 

cell populations.  If these cell-population variances differ 

from cell to cell, so too do the values of 

ave(yiJk-yiJK)2 

since these averages will always be twice the variance of 

the population in the corresponding cell. 
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When the underlying situation Is at the other 

extreme, so that only variance components should be con- 

sidered, then the labels upon the rows and columns can 

wisely be regarded as purely arbitrary.  This means that 

If the same "individual" were to appear as a row in each 

in two realizations of the same experiment, the numbers 

labeling the two rows would be quite unrelated.  Such lack 

of relationship could be in the nature of the situation, or 

could have been enforced by our insistence on a randomiza- 

tion of the row numbers, separately for each realization, 

before the data was made available for analysis.  But if 

the labels are arbitrary, we connot think of one cell, 

considered by itself, as different from another.  Similarly, 

there will be only four kinds of pairs of cells:  identical; 

in same column but not In same row; in same row but not 

in same column; In different rows and columns.  And the 

four corresponding average square differences would have 

the following values: 

2       ^2 
Jk  ^1JK; ^^UlT^W     " 2a 

ave^ijk-yijK)2 = 2°2 + 24c+ 24 

^^iJk-^IJK)     =   2a     +  2aRC  +  2aR 

ive(yijk-w2 = 2°2 + 24c + 24 + 24 
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Knowing either set of four quantities, either the 4 average 

squared differences, or a2, o|» a.« and o^c,   the other set 

is very easily calculated. 

Why then do we prefer the first set, since they 

are arithmetically equivalent?  It must be because of some 

matter of interpretation.  And the interpretation must in- 

volve not the realizations of a single experiment but the 

comparison of two or more different experiments.  In fact, 

we feel that, for example, the sort of change of circumstances 

2 2   2 O 
which halves or doubles ar  while leaving a  ,   a»«* and a 

unaffected is easier to understand than the sort which 

changes aveiv1^-V1jK)     without affecting its three fellows. 

The prime criterion for selecting useful variance components 

is that we should be more easily able to understand the changes 

in the situation which would change some variance components 

while leaving others alone. 

Known-period time functions 

Let us now consider periodic time functions with 

a fixed period and a stationary Joint distribution.  One 

variance component description has already been given in 

2   2   2 
terms of QQ» a-^*   Og»--- •  (Normality is a matter of in- 

difference to us in the present instance.)  Another can be 

given in terms of Jowett's serial variance function [Jowett 1955]: 

Vh  = i  ave(y(t+h) - y(t)) 2 
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which, on account of stationarlty, must be the same for 

all values of t.  The formal relations between these two 

schemes is easily found to be: 

Vh =2j(sin
24£).a2 

The formal similarities between the two pairs of mutally 

related variance-component schemes, one for the replicated 

two-way table, and the other for stationary periodic time 

series, are very striking, but the actual similarities go 

deeper. 

What are the simplest changes which we can con- 

template making in a situation involving stationary periodic 

time functions?  They are the results of such simple linear 

operations as the result of passing an electrical voltage 

through a simple circuit consisting of resistances, con- 

densers, and inductances, or the result of passing a 

mechanical motion through a simple linkage of springs, 

masses, and dash pots.  (Such processes occur, in particular, 

in almost every physical or chemical measuring instrument.) 

Any such linear process will affect the amplitude and phase 

of each harmonic in a characteristic way.  If its effect 

on a pure jth harmonic would be to multiply amplitude by 

| Lj | , then the Jth variance component of any stationary 
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ensemble of periodic time series (with period 27r) will be 

multiplied by | L. | ^ = L.I/*.  There Is no correspondingly 

simple result for the serial variance function.  Consequently, 

the frequency-related variance components are much more useful 

than serial variance functions in dealing with stationary 

ensembles of fixed-period time functions. 

(In highly mathematical language, the frequency 

variance components are a basis for second moments which 

simultaneously diagonalize the effects of all operations that 

are linear and time-shift variant—all black boxes on the 

sense of pp. xyz-uvw.) 

It can be done with covarlancesi 

The discussion Just given stressed the analogy 

between classical analysis of variance and the analysis 

of stationary periodic time series by using averages of 

quares of differences of observations in both situations. 

It would have been possible to have stressed the analogy 

almost equally to have used covarlances in both situations. 

In the replicated row-by-column pattern, we have, when the 

covarlances are taken  across the specification, from one 

realization to another, WITH AN ENTIRE NEW SAMPLE OF ROWS 

AND COLUMNS IN EACH REALIZATION! 

GOV
 

{yijk' W = °2 + 4c + 4 + 4' 

COV iyijk'   yiJK}   =   ÜRC  +   4+   4' 

s 
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cov Wjk' yiJ}d" " aR' 

cov iyljk' ^1^ " 4' 

These covarlances across the ensemble are quite analogous 

to the serial covariances in the time series case, which 

are given by 

R(h) = cov iy(t), y(t+h)} 

where the covariance is again across the ensemble, from 

realization to realization, and whose relation "to the 

frequency variance components is, formally. 

R(h) = a0 + ZjCcos Jh).aj- 

The main reason for approaching the analogy in terms of 

averages of squared differences is a pedagogical one.  It 

seems to be easier to think about the averages of squared 

differences, when working from one realization to another. 

After all, as statisticians we are quite used to thinking 

about the average value of some quantity we have managed 

to measure only once.  But it is a much further cry to 

think about a covariance of two quantities, each of which 

has been measured only once. 
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The qualitative nature of this distinction be- 

tween covariances and averages squared differences Is 

notably different for the replicated double classification 

and for stationary ensembles of periodic time series.  This 

is due, in large part, to our tendency to expect the versions 

of classifications to have names, to try to think in terms 

of situations where means and main effects are: more Important 

than variance components.  We feel that If, for example, 1 

Is a subscript Identifying persons, that 1=3 should refer 

to a particular person, not to the third row of some randomly 

arranged data array. 

Yet in a situation where a pure variance component 

approach is appropriate, the process of randomly rearranging 

the rows of the data array generates what we may think of, 

without doing too much violence to the situation, as a new 

(but clearly not independent) repetition of the experiment. 

If we fix our eyes on particular values of 1, J, k, I, J, 

and K, consider all admissible rearrangements of the data 

array, and then average the simplest quadratic expressions, 

we are led to suitable symmetric functions of the original 

data array which are natural estimates of the covariances 

across the ensemble, provided the latter are given an 

averaged Interpretation. 
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The usual practice In the spectrum analysis of a 

single stretch of time series Is entirely analogous to such 

a procedure.  Let us, for example, consider estimating 

0Ov(y,, 7^) ,     We have the original observations y-j^ ,y2 ,yo »y^yc J 

  .  The results of shifting the time origin, one unit at a 

time, and always dropping observations at negative times, are 

first 72^2'^k'y5'J6' — * then ^^'y^'y^'^e^T' — and so ^^ 

The pairs (y-^y^), (y^y^), (yg.ygK (ytJ,yt+3) are 

"equivalent" (either because statlonarlty is assumed or because 

we want an averaged covarlance) and we can calculate a "sample" 

covariance  from these pairs.  Such processes of imitating the 

sought-for covariance across the ensemble with a sample 

"covarlance" wandering around the data pattern are inevitable 

when only a single realization is available, be it in an 

analysls-of-variance situation or a time series situation. 

(in the time series situation, if and when we look 

more deeply into the details of the situation, we may find 

that the averages of squares of differences indeed, as Jowett 

has suggested [1955J 1957, 1958], have real advantages over 

covarlances, insofar as problems associated with trends and 

very low frequencies are concerned.  But this is for the 

future to reveal.) 
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Black boxes and the general case 

A discussion exactly analogous to the one Just 

given for stationary ensembles of period-2ir tine series 

can be given for the general case of a stationary ensemble 

of time series.  We shall not attempt to give details here, 

trying only to hit the high points. 

There are many circumstances under which It 

is convenient to call any procedure or process (be it 

computational, physical, or conceptual) which converts an 

input to an output a black box.  In dealing with time series 

it is convenient to restrict the term black box to procedures 

or processes which satisfy two further conditions; 

(1) The output corresponding to the superposition of 

two inputs is the superposition of the corresponding out- 

puts . 

(2) The only effect of delaying an input by a fixed 

time is to delay the output by the same time. 

If the procedure or process departs from one or both it- 

is conveniently called a colored box, with specific colors 

for specific sorts of departure. 

Some examples of black boxes Include: 

(a) moving averages, such as 

zt = H lyt-k+l 
+ yt-h+2 

+ ••' + yt} 
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(b)  time delays 

(c)  differences 

zt = yt-h 

zt = yt " yt-h 

(d)  more general moving linear combinations 

zt ■ aoyt + aiyt-i + ••• + ahyt.h 

(e) linear electric networks (which may 

Include amplifiers, transmission lines, and wave guides), 

(f) linear mechanical systems, 

(g) linear economic systems, 

(h)  differentiation with respect to time, 

(l)  Integration with respect to time. 

Clearly many of the most important computational, physical, 

and conceptual processes are black boxes in this sense. 

It is easy to show (if we grant a small amount 

of continuity and a sufficient lack of dependence of 

present output on what happened at t = -t») that, if the 

input to a black box is A" cos((Dt+5) , then the output has 

to take the form G(tü) • A« cos(a)t+5+cp(cD) ), where the amplifi- 

cation G(CD) and the phase shift cp(co) depend only upon CD. 
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This brings every black box Into the framework discussed 

by Jenkins, so that 

(spectrum of output) = [G(Cü)] . (spectrum of Input). 

The Important thing about this relation, for our present 

purposes. Is that the variance component associated with a 

single frequency (or.narrow band of frequencies) in the out- 

put Is determined by the corresponding variance component 

of the input.  There is no mixing up of frequency variance 

components.  This is simultaneously true for all black 

boxes, and Is the basic reason why the user, be he physicist, 

economist, or epidemiologist, almost invariably finds 

frequency variance components the most satisfactory choice 

for any time series problem which should be treated In terms 

of variance components. 

II 

OTHER ANALOGIES 

I hope that Part I has made the close relationship 

between spectrum analysis of a single time series and vari- 

ance component analysis very much clearer.  There are similar 

analogies to other classical techniques.  These are worthy of 

mention here, even though we cannot take the space to describe 

them in detail. 
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Even though the cross-spectrum analysis of two 

or more time series was not discussed In this session (in 

part because an understanding of the spectrum analysis of 

one time series is an essential prerequisite), it is im- 

portant to point out that probably the most important 

aspects of cross-spectrum analysis are cases of (complex- 

valued, frequency-dependent) regression analysis in which 

the analog of a regression coefficient is the ratio of a 

(complex-valued) cross-spectrum density to a spectrum 

density, and is estimated by the corresponding ratio of 

estimates of averaged densities.  (This fact will not 

surprise those who recall that a simple regression coefficient 

is estimated as the ratio of a sample covarlance to a sample 

variance, or that a structural regression coefficient is 

sometimes estimated as the ratio of a sample covarlance 

component to a sample variance component.)  In studying 

time series, as in its more classical situations, regression 

analysis, whenever there is a suitable regression variable, 

is a more sensitive and powerful form of analysis than 

variance component analysis.  As a consequence, one major 

reason for learning about spectrum analysis is as a 

foundation for learning about cross-spectrum analysis. 

- 
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The other approaches to data associated, directly 

or Indirectly, with the analysis of variance and the name 

of R, A. Fisher also have their analogs In the analysis 

of time series.  We have already noted, for example, how 

classical harmonic analysis Is the appropriate approach 

to known-period time functions when the over-all situation 

Is such that one should look at means rather than at 

variances. 

In dealing with the mean-like behavior of non- 

perlodlc time functions from a Fourier point of view, a 

natural and effective approach is furnished by complex 

demodulation in which the given stretch of data iX.} is 
J 

first converted Into two stretches of (real) values, viz. 

tX. cos CD t}  and  (x. sin co t} 

which can usefully be regardad as the real and (+ or -) 

imaginary parts of one or the other of the complex stretches 

of data 
leu t,     ,   -ico t. 

{X.e  0 }  or {X.e   0 } . 
- j - j 

The second step is to smooth the two real-valued stretches, 

smoothing both in the same way.  The simplest smoothing 

process is the formation of equally-weighted "moving averages," 
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but It is often desirable to use weights which taper 

down at each end appropriately.  The final step Is to 

dlsplpy the result In various ways. Including: 

(1) Plotting Individual stretches of smoothed 

values against time. 

(2) Plotting corresponding smoothed values 

against one another, using time as a parameter, 

(3) Plotting against time the phase or the 

magnitude of the complex number whose real and Imaginary 

parts are the corresponding smoothed values. 

The Interpretation of such plots Is usually 

guided by an understanding of what happens If a particular 

single frequency or band of frequencies are prominent in 

the original data.  If the original data were simply 

X. = A cos (tüt+cp), then the values of the two modulation- 

product stretches would be 

X .    COS   CD   t   "   -jy   A    COS (awü0)t +  cp + -p   A   cos (CD+CO    ) t v        o' +   cpl 

X .   sin  to  t 
J o 

■p   A   sin (cü-a»0)t +  cp +   2  A  sin ( OH-Cü   ) t   +   cp 
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and the result of smoothing these would be to nearly 

eliminate both terms If Cü was not near m  ,   and to nearly 

eliminate the terms in (OH-O) )t + cp if CD is near mQ, The 

results of smoothing, then, would, if CD is near coo, be 

close to 

| A.O(üWü0) cos (awDo)t + cp 

and 

| A-G(CD-CüO) sin (üXD0)t + cp 

where G(cü-tü ) is the magnitude of the transfer function 

of the smoothing process (which we have assumed to use 

symmetrical weights and thus not to affect phase).  In 

this simple case, a cosinusoidal variation of angular 

frequency CD in the original, which may have been quite 

effectively concealed by larger contributions at other 

frequencies, has been demodulated, and appears as a 

cosinusoidal variation at the very much reduced angular 

frequency ca-m   ,   which is likely to be much more evident 

to the eye,  (Complex demodulation, the calculation and 

smoothing of two stretches of modulation-products, is 

necessary if we are to distinguish the results of de- 

modulating cos(co +5)t from the results of demodulating 

cosfco -5) t, x o  ' 
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This technique is the natural extension to the 

nonperlodic case of the ideas underlying the classical 

Buys-Ballot table [Stumpff 1937, PP. 132ff, or Burkhardt 

1904, pp. 678-679], the so-called secondary analysis, and 

Bartels's summation dial [Chapman and Bartels 19^0, 

PP. 593-599 or Bartels 1935, PP. 30-31].  It has to be 

tried out on actual data before its incisiveness and power 

is adequately appreciated. 

Problems involving the simultaneous behavior 

of more than two time series have not been worked on 

in a wide variety of fields of application, but enough 

has been done to point the way and suggest the possibilities. 

There will be an increasing number of instances where- the 

corresponding nontime-series problems would be naturally 

approached by multiple regression.  These can be effec- 

tively approached by multiple cross-spectrum and spectrum 

techniques which will be precise analogs of multiple 

regression in spirit and, if care is taken in choice, in 

the algebraic form of their basic equations.  The dif- 

ferences which will arise in the development will stem 

from: 

(1) the fact that regression goes on separately 

at each frequency (which produces merely an extensive 

parallelism of results), and 
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(2)  the fact that regression coefficients will 

now take complex values rather than real values (which 

enable us to learn a little bit more about the underlying 

situation). 

To my knowledge the multlple-tlme-serles analogs 

of discriminant functions and canonical varlates have not 

yet arisen In practice.  But there would seem to be noJ 

difficulty in analogizing either or both. 

Ill 

PARSIMONY AND ERROR TERMS 

Parsimony 

It appears to be natural to try to set up statisti- 

cal problems In such a way that the numerical values of only 

a few characteristics, each easily estimated from the obser- 

vations, suffice to complete the fixing of a probability model 

for the situation.  And It appears all too natural to feel 

that such presuppositions as normality or constancy of vari- 

ance are Important, since. If they failed to hold, the whole 

situation would not be completely fixed by the values of those 

characteristics which are easily estimated.  But, for all such 

naturalness, the working statistician knows that it is often 

useful to estimate the mean of a population whose variance is 

unknown, and, similarly, that it is often useful to estimate 



28 

the variance of a population that Is non-normal (frequently 

without trying to assess the nature and amount of Its non- 

normality) .  For characteristics to be usefully estimated. 

It is not necessary that their values complete a precisely 

stated model. 

It Is frequently the case, that results about 

designing an experiment are only precise when the character- 

istics to be estimated complete a precisely stated model. 

Thus the famous telephone query, "I'm going to do an experi- 

ment, how many sheep should I use?" cannot be answered when 

all else that is known Is that the experimenter wants to 

compare the means of two treatments to a precision of ±1=5 

pounds of body weight, or that he wants to assess a simple 

variance of ±1C$ of Itself.  In the first of these Instances, 

precise design would require a precise variance of observa- 

tion.  In the second, precise design would require precise 

knowledge of distributional shape.  Yet experiments can be, 

and arej wisely, If not optimally, designed and valldly 

analyzed in the absence of such precise information. 

Insofar as normality is needed only (l) to ensure 

that knowledge of the spectrum would leave nothing else to 

learn, or (il) to ensure that pre-experimental assessments 

of variability are precise, and these are the only reasons 

why Jenkins Is concerned with normality, normality Is not of 

great practical importance In spectrum analysis. 
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(it Is fortunate that normality Is moderately 

closely approximated to In certain applications,   since there 

are further branches of time series analysis, for example 

those dealing with numbers of upcrosses or numbers of maxima, 

for which normality is of crucial importance.  Sequences of 

zeroes and ones represent one ultimate expression of non- 

normality.  In some instance, such sequences are usefully 

studied by spectrum analysis, in others they are not.  The 

difference has to do with which aspects of their behavior 

is important.) 

Indeed there is a very general principle of data 

analysis upon which all examiners of main effects (in analy- 

ses of variance) lean, whether they know it or not.  This 

can be boldly stated as the Principle of Parsimony, viz., 

IT MAY PAY NOT TO TRY TO DESCRIBE IN THE ANALYSIS THE COM- 

PLEXITIES THAT ARE REALLY PRESENT IN THE SITUATION.  Every 

time that one pays attention to main effects alone, whether 

because they are so much larger than Interactions, or because 

the interactions-cannot be estimated with sufficient pre- 

cision, or for almost any other reason, one is behaving in 

accord with this principle.  Thus this principle is widely, 

though usually Implicitly, adopted.  The same principle applies 

to the quadratic analysis of time series, to spectrum analysis 

and its relatives, not just in a single way, but In some three 

or four separate and distinct ways:- 
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Normality 

The first application Is to the need, or lack of 

need, for estimation to a complete specification, for either 

assuming normality or estimating more complex matters than 

the spectrum.  In most practical situations this need Is 

non-existent.  Knowledge about the spectrum of a probably 

non-normal ensemble of time-functions can be useful. Just as 

knowledge about the mean of a population of Imprecisely known 

variance can be useful.  (in either case, once the data has 

been gathered, consistency of repetition is the appropriate 

basis for Judging the stability of the result, not assumptions 

about normality or known variance.) 

Stationarity 

The second application of the general principle is 

to the assumption of stationarity, the analog in time series 

situations to the assumption of constancy of variance in more 

classical situations.  The assumption of stationarity is one 

at which the Innocent boggle, sometimes even to the extent of 

falling to learn what the data would tell them if asked.  Yet 

I have yet to meet anyone experienced in the analysis of time 

series data (Gwllym Jenkins is an outstanding example) who is 

over-concerned with stationarity.  All of us give some thought 

to both possible and likely deviations from stationarity in 

planning how to collect or work up data, but no one of us will 

allow the possibility of non-stationarity to keep us from 

making estimates of an average spectrum, any more than working 



31 

analysls-of-varlance statisticians will refrain from esti- 

mating a variance component because the variability thus 

assessed may well have to be an average. 

The fact that the spectrum Is changing with time 

(or elevation, or azimuth) need not make It unwise to estimate 

one, or several, average spectra.  The detection of waves 1 

millimeter high, 1 kilometer long, with a 10,000 kilometer 

fetch [Munk and Snodgrass 1957] was based upon estimates of 

spectra averaged over four-hour periods,  The crucial point 

in Identifying the length of the fetch was the rate of change 

of the center frequency of this distinctive, but very small 

peak, from one four-hour period to another.  Once we admit 

that we are estimating an average spectrum, we have admitted 

that there may well be other relevant characteristics of the 

situation beyond the spectrum, that estimation is not com- 

pleting specification.  Such an admission, as this example 

shows. Is a good thing rather than a bad one. 

There seems to be extra reluctance to consider an 

average spectrum.  It is hard to be sure of the principal 

reasons for this, but a well-founded desire for replication 

as a basis of security is likely to be oneo  If only one time 

series is available for analysis, as is far too often the 

case in so many economic instances, it is comforting to be- 

lieve that, somehow, stationarity makes it possible to have 

"replication" from one time period of another»  The truth 

is not so comforting.  Stationarity is frequently absents 

Even when stationarity holds, something like "replication" 
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can only occur within the limits of a single stretch of 

moderate length If the true spectrum Is devoid of detailed 

features (is sufficiently smooth In the small).  And It Is 

surely not wise to trust In "replication" that may not be 

there. 

Harry Press notes (private communication) that 

average spectra may hide an Important departure from statlon- 

arlty.  In an entirely similar way, the use of analysis of 

variance on the results of an experiment comparing 12 treat- 

ments In randomized blocks may hide a substantial dependence 

of variability upon treatment, or a substantial dependence 

of treatment effect upon block.  These things can, and do 

happen.  The possibility of their occurrence must be carefully 

kept In mind.  But this fact Is not relevant to the point we 

have just been discussing. 

Surely, If one has both adequate data and scientific 

or Insightful ground to fear non-statlonarity, It will be wise 

not to average spectra over too long a time.  But the urge to 

choose the averaging time wisely Is strengthened by an under- 

standing that all data analyses estimate average spectra. 

Wisely-chosen resolution 

The third application of the general principle Is 

to the question of the narrowness of the frequency ranges 

for which we should seek spectrum estimates.  There are In- 

finitely many frequencies.  The number of separate frequencies 

over which we could seek estimates from a given body of data 

.■■'■-:.    ■■■■ ■-■' ■  H< -..■•-■■- ': 
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Is limited by the extent of the data, and grows without limit 

as longer and longer pieces of data become available.  But 

it does not follow that we should always, or even usually, 

work close to this limit.  The analogy with an Interaction 

mean square In a row-by-column table Is close and persuasive. 

There are r-c Individual estimates of the Interaction mean 

square, each based on Just one of the residuals which remain 

after fitting rows and columns, each Involving Just one degree 

of freedom.  How often does It pay us to calculate and compare 

all these separate estimates? Only very rarely.  (it Is often 

useful to calculate and compare a few estimates of an Inter- 

action mean square, each based on a reasonable portion of 

the available degrees of freedom.)  The position with spectrum 

estimates Is analogous and similar; to be effective we must 

estimate averages over well-selected frequency ranges.  (This 

Is In addition to the averaging over time necessitated by 

lack of perfect statlonarlty.)  In both Instances, interaction 

mean square and spectral estimate. It does not pay to try to 

estimate too much detail, even If the detail Is really there. 

Proper error terms 

The question of the proper error term Is a classic 

of the analysis of variance, often relied upon to separate 

the men from the boys and the pastry cooks.  It Is well 

recognized that, for example, the plot-to-plot error of an 

agricultural experiment Is almost certain to be too small, 

specifically because It rules out place-to^place and 
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year-to-year components of variation.  It Is not too great 

a stretch to consider this question, which arises for time 

series In an only slightly different form, a fourth example 

of the general principle of parsimony.  For while It will 

not be costly to estimate plot-to-plot variance. It Is likely 

to be costly to trust It, to use such estimates as error 

estimates.  Even Its estimation may be costly, in the agri- 

cultural situation, if the result is to expend too much 

effort on choosing the optimum plot size, on doing one's 

best to reduce what may be a minor source of variation. 

As Jenkins points out at the very end of his paper, it is 

not uncommon for spectrum estimates based upon different 

experimental repetitions to differ more than might be 

expected from their internal behavior.  (Statisticians 

familiar with any of a wide variety of other situations 

would be surprised if this were not so, if external error 

were not larger than Internal error.)  As a consequence, 

it is not likely to be worth while to expend too much effort 

in using estimates whose windows have optimum widths and 

optimum detailed shapes, since this may mean exerting a 

large effort to minimize a minor component of variability. 

One way to describe matters is in terms of alter- 

native ensembles.  In each repetition of the experiment, 

the time series which is actually realized Is drawn from 
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a different ensemble (from a different population each 

element of which Is a whole time series) .  Such a de- 

scription Is entirely analogous to a description of an 

agricultural experiment In which each local comparison 

of two treatments Is drawn from a population, but the 

populations for different "places" or "years" differ. 

The fact that matters may be appropriately described In 

such a way often affects what we wish to estimate.  If 

an average comparison. In the agricultural situation, 

depends upon the "place" In a way, or for reasons, that 

we do not understand, we are usually driven to estimate, 

not average responses at Individual places, but rather 

average responses for all places.  (These are the natural 

"main effects".)  There are situations, however, as for 

example when studying a cheaper substitute to see If It 

causes occasional deleterious effects, where we may need, 

because of variation from place to place, to estimate the 

value of the least favorable average response and, perhaps, 

the frequency with which similarly unfavorable situations 

will arise in more extended practice.  The situation with 

time series is exactly similar. 

Most of the time we shall be driven to estimation 

of a spectrum averaged over repetitions, where the pattern, 

or the causes, of the changes In spectrum from repetition 
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to repetition are not understood.  This averaging over 

repetitions, forced on us by alternate ensembles. Is super- 

posed upon the averaging over time within repetition, par- 

tially forced upon us by non-stationärIty, and upon the 

averaging over frequency bands, forced upon us by the 

limited extent and amount of our data.  What we estimate, 

then. Is an average of averages of averages.  We have come 

a long way from the Idea of a tight specification-estimation 

relationship, where everything which Is not presupposed 

should be estimated.  But It Is well that we have done so. 

And no one who has considered carefully what Is estimated 

by a main effect In a reasonably complex analysis of vari- 

ance can maintain that so much averaging Is surprising or 

unusual. 

Just as In more conventional areas of statistical 

application, there are situations, the comparison of vibra- 

tion Intensity with structural strength being perhaps the 

most obvious, where we shall need to estimate not the 

average spectrum but some upper limit, perhaps an upper 99^ 

limit, for the spectra In the various replications, for the 

spectra of the various alternative ensembles.  But such 

Instances are the exception, not the rule. 

J 
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Effects upon balance between stability and resolution 

In any case, the presence of true differences 

between repetitions, of differences between the spectra of 

the alternative ensembles, will surely force a readjustment 

of the balance between stability and resolution.  The main 

reason for estimating average spectral densities over rela- 

tively broad frequency bands Is to assure moderate stability 

of estimate.  If variation within ensembles should be small 

compared to variation between ensembles, such wlthln-ensemble 

stability Is of little value to us.  Thus we can afford. In 

such circumstances, to Improve our frequency resolution by 

estimating spectral densities averaged over narrower bands. 

(There will still remain a natural limitation on resolution, 

however, associated with the limited duration of the individual 

ensembles,) 

SPECIAL PROBLEMS OF TIME SERIES 

Resolution 

The notion of resolution, as applied in optics and 

other branches of physics, is a well-recognized and useful 

physical concept.  It does not have any single definition in 

numerical terms, and it is well that It does not.  For the 
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general Idea that "higher resolution" means "capable of 

detecting more detail" Is clear, while any one way of making 

It quantitative would not be universally satisfactory.  (if 

you like, "resolution" is not "unldlmenslonal".  But whether 

you like this fact or not, it would be unwise to make It 

unldlmenslonal by a flat of definition.)  Jenkins and Parzen 

have introduced us to a number of definitions of bandwidth. 

There are, and will be, other such definitions.  The value 

of any of them lies in what the values of the variously 

defined bandwldths tell us about "resolution".  No one defi- 

nition, nor even all the definitions so far given, can tell 

us all about resolution.  As Goodman pointed out in his 

verbal discussion, such matters as "rejection slope in 

db/octave away from the major lobe" or "db of rejection at 

a particular frequency" can be Important In particular cir- 

cumstances.  Thus numerical values of bandwldths according 

to any definition closely related to "resolution" can help 

us, but they will help us most If we regard them as telling 

us part, not all, of the story. 

Choice of resolution 

There is one matter upon which I should not like 

to have my views misunderstood:  the desirability In explora- 

tory work of making spectral analyses of the same data with 
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different resolutions (usually represented In packaged systems 

of calculation of spectrum analysis by the use of varying num- 

bers of lags in the Initial computing step, which is the cal- 

culation of sums of lagged products).  Let me be quite clear 

thatj in my Judgment and according to my experience, it 

definitely is very often desirable in exploratory work, and 

sometimes essential, to make analyses of the same data at 

differing resolutions.  Moreover, it may be equally important 

to use different window shapes and different prewhitenings. 

The place where Jenkins and I differ seriously, at 

least verbally (and I suspect the difference is more verbal 

than actual) is in the utility of examining some sequence of 

mean lagged products as a firm basis for choosing the number 

of such values to be Inserted in an appropriate Fourier trans- 

former, and transformed into spectral estimates.  Our differ- 

ence is greater still in connection with the adequacy of the 

point of apparent "damping down" of these values as a basis 

for choosing this number.  It is not that knowledge of the 

"damping down" lag is not useful, but rather that, at least 

in my view, its unthinking use may be dangerous. 

On the one hand, I have known of cases where the 

useful estimates of power spectra came from stopping well 

short of the damping-down point.  On the other hand, if the 

spectrum were to contain one very large, very broad, very 
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smooth peak, and a close group of small, narrow peaks, the 

mean lagged products would appear to damp down at a lag 

associated with the width of the large broad peak, so that a 

spectrum whose resolution was associated with this damping- 

down point would fall to resolve the close group of small 

peaks.  Here, as In all sorts of data analysis, there Is no 

substitute for careful thought combined with trial of various 

alternatives, 

It is natural to be tempted into calculating more 

spectrum estimates than the number of mean lagged products 

used as their basis.  This temptation need not be a dangerous 

one, once it is realized that, given the mean lagged products 

and the shape of the window, all the possible spectrum estimates 

lie on a cosine polynomial of degree equal to the number of 

lags used.  Once the usual number of spectrum estimates have 

been calculated, they are enough to determine this polynomial, 

and the calculation of further estimates is equivalent to a 

process of cosine-polynomial interpolation,.  This does not 

mean that calculating more estimates is useless, or that the 

results of further calculation will lie close to the results 

of straight-line interpolation between the poins already cal- 

culated.  But it does mean that the additional estimates 

provide no new Information, only more detailed exposition of 

information already present.  And it means that drawing smooth 
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freehand curves through the original spectral estimates Is 

often much more useful than connecting them by segments of 

straight lines. 

Blurred estlmands 

In discussing the general principle of parsimony 

we emphasized the need to estimate averages over bands of 

frequencies.  This point Is so central to spectrum analysis 

as to make Its heuristic and Intuitive understanding worth 

considerable effort.  Let us begin with classical situations. 

If one has more degrees of freedom than variance components, 

then one can find estimates of some (and perhaps all) of these 

variance components whose average values do not depend upon 

the other variance components.  But once there are more vari- 

ance components than degrees of freedom, this need not be 

the case.  Consider a two-way r-by-c array of observations 

in which there are r'C+2 variance components, viz. a rows 

variance component, a columns variance component, and one 

variance component for each of the r.c cells.  (This Is a 

natural model when the variance of the cell contributions 

varies Irregularly from cell to cell.)  In this situation 

there Is no estimate of any of the r-c cell variance com- 

ponents whose average value Is free of all the other variance 

components. 
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In the time series case there are very many more 

variance components than degrees of freedom.  For, unless 

some periodicity assumption holds perfectly (and I know of 

not a single Instance where It does), a contribution of the 

form 

A cos cut + B sin (Dt 

Is permissible for any value of co In some Interval.  And as 

statisticians know from bitter experience, at least all the 

things that are permissible will happen.  Thus, In principle, 

there are Infinitely many variance components, one for each 

possible m.     And, when the realities of band-llmltlng and of 

finite duration of data are faced, there are only a finite 

number of observations available, and hence only a finite 

number of degrees of freedom.  There Is no hope of estimating 

all variance components here, even by using Impractlcally 

unstable estimateso 

Bracketing undeslred effects 

Let us return, for the moment, to a situation with 

a finite number of variance components, only four of which 

will enter our discussion.  Let us suppose that we are In- 

terested In estimating a particular one of these variance 
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components, af^,   and that our choice has narrowed down to 

three quadratic functions of the observations, whose average 

values are 

ave^ =  v^  +  0.04 a^ - 0.02 o^ + OoOl a^ 

avefs"^ = a^ + 0.06 a^ + 0.04 a^ + 0.02 a^ 

ave{c^ - <T? - 0.08 a^   -  0.05 ^ - 0.03 o^ 

So long as we Insist on using only a single quadratic function 

of the observations, the choice of A, whose average value Is 

least affected by di,   o|, and a^ has a real advantage.  But 

If we were willing to look at two quadratic functions of the 

observations together, then B and C are a more effective 

choice, at least so far as average values go.  For, on the 

average, one Is raised by the other variance components, while 

the other Is lowered.  If, for example, the observations are 

replicated m times, so that there are m A's, m B's, and m C's, 

and so that, consequently, 

B + tsB/v^n 

Is an upper confidence limit for ave B, while 
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"C - tscX/m 

Is a lower confidence limit for ave C, then the Interval 

(C-tBc/y/m,   B + tSgX/m) 

Is a confidence Interval for c^, without regard for the 

values of <£,   a^,  and a^.  (No such confidence Interval can 

be based upon the m values of A.)  Whenever we cannot get 

estimates (of what we want to estimate) whose average values 

are wholly free of what we do not want to estimate^ the use 

of such paired estimates, one underestimating and the other 

overestimating. Is likely to be useful and, perhaps, even 

necessary. 

When we make estimates of spectrum densities, the 

window which relates the average value of our estimate to 

the spectrum Is (for the apparently inescapable case of 

equally-spaced data) Inevitably a cosine polynomial (of 

degree no larger than the Index of the longest lag used), 

It can vanish at only a finite number of points.  Consequently 

Its main lobe, which points out the band of frequencies over 

which we seek to estimate some average spectrum density. Is 

Inevitably accompanied by minor lobes which allow leakage 



45 

from the parts of the spectrum outside the desired band to 

affect the average value of our estimate, and hence to affect 

Its Individual values.  Even If we are willing to accept the 

blurring due to averaging within the major lobe, as we must, 

like It or not, we are rightly reluctant to face unknown 

possibilities of leakage from other parts of the spectrum. 

The cure is the same as for the example with four variance 

components:  use two estimates.  (This time one estimate 

should have all minor lobes negative while the other has all 

minor lobes positive.)  This general situation is discussed 

more fully elsewhere [Tukey 196l(?)], and it is to be hoped 

that some suitable pairs of estimates will soon be explicitly 

available.  (For one pair see Wonnacott 196l.) 

Kinds of asymptosis 

The purpose of asymptotic theory in statistics is 

simple:  to provide usable approximations before passage to 

the limit.  Consequently asymptotic results and asymptotic 

problems are likely to be of limited utility when the finlte- 

ness of a sample size or of some other quantity is of over- 

whelming importance.  (Thus, for example, the theorem that 

maximum likelihood estimates are asymptotically normally 

distributed with a certain varlance-covariance matrix is 
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rarely of any use when there are only 1 or 2 degrees of 

freedom for error.)  It Is sometimes hard, hut almost 

always Important, to remember this fact. 

Time series analysis follows Its usual pattern, 

"like most statistical areas, only more soi". Insofar as 

asymptosls Is concerned.  For there are three distinct ways 

In which time series data could tend toward a simplifying 

limit! 

(1) The total extent of all the stretches 

of data available could become more nearly in- 

finite . 

(2) The extent of each Individual stretch 

of data could become more nearly infinite. 

(3) The bandwidth of the measurement could 

become more nearly infinite (requiring a more 

nearly vanishing interval between times of re- 

cording) . 

The consequences of these three, which are quite distinct, 

depend upon whether the resolution of the estimates to be 

made (a) remains constant, (b) increases as fast as the 

total extent, extent, or bandwidth of the data, or (c) 

behaves in an intermediate manner. 
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If (l) occurs without (2) or (3)^ the possible 

resolution does not Increase, so that (a) Is the only rele- 

vant situation.  The stability of Individual estimates of 

(averaged) spectrum density then Increases essentially pro- 

portionally to the total extent of data. 

If (2) proceeds, (l) must also.  If (2) and (l) 

proceed without (3)i the range of (allassed) frequencies to 

be considered will not change, so that a constant number of 

estimates corresponds to constant resolution, and to an In- 

crease In stability essentially proportional to total extent 

of data.  If, on the other hand, the resolution Is Increased 

proportionally to the total extent of data, the stability of 

individual estimates will remain constant. 

If (3) proceeds without (l) or (2), we may make 

estimates over a wider and wider frequency range, but we 

cannot obtain higher and higher resolution.  For constant 

resolution, we obtain constant stability. 

In practice, where there are several repetitions, 

several stretches of data. It may be that we can wisely 

treat the total extent of all data stretches asymptotically 

(especially when the additional variability in external error 

should be considered), but I know of no single practical 

Instance where an asymptotic treatment of either stretch 

length or band-llmltatlon gives useful results» 
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The limitation on ultimate resolution due to 

limited extent of data stretches, and the limitation on 

frequency ranges for which estimates can be made due to 

band-llmltlng, always seem to behave like small-sample 

phenomena, and must be faced In detail.  They do not at 

all behave like large-sample phenomena, where everything 

can be "smoothed out" and treated In a limiting, continuous 

way. 

THE MORAL 

To analyze time series effectively we must do the t 

same as In any other area of statistical technique:  "Pear 

the Lord and Shame the Devil" by admitting that: 

(1) The complexity of the situation we 

study Is greater than the complexity of that 

description of It offered by our estimates. 

(2) Balancing of one 111 against another 

In choosing the way data Is either to be gathered 

or to be Initially analyzed always requires knowl- 

edge of quantities which cannot be merely hypoth- 

esized, and which. In many cases, we cannot usefully 
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estimate from a single body of data, such as 

ratios of (detailed) variance components or 

extents of non-normality.  Theoretical opti- 

mizations based upon specific values of such 

quantities may be useful guides , but only 

when the failure of past experience (and the 

present data) to give precise values for 

these quantities Is recognized and allowed 

for, 

(3) There Is no substitute for some sort 

of repetition as a basis for assessing stability 

of estimates and establishing confidence limits. 

(4) Asymptotic theory must be a tool, and 

not a master. 

The only difference Is that one must be far 

more conscious of these acceptances In time series analysis 

than In most other statistical areas. 

In a single sentence, the moral 1st  ADMIT THAT 

COMPLEXITY ALWAYS INCREASES, FIRST FROM THE MODEL YOU FIT 

TO THE MODEL YOU USE TO THINK AND PLAN ABOUT THE EXPERIMENT, 

AND THENCE TO THE TRUE SITUATION. 
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VI 

THREE MYSTERIES 

Up to this point, we have been concerned with the 

fundamentals of time series analysis and with the close and 

cogent analogies between time series analysis and other areas 

of statisticso  As a consequence our remarks have related 

most closely to the first of the two papers.  It Is now time 

to turn to the second paper, which grapples with some of the 

more detailed aspects of time series analysis.  Here It seems 

best to try to shed light on a few of the aspects which are 

likely to seem most mysterious.  Our attention will be given 

to the mysterious Importance of dividing sums of lagged 

products by n rather than by n-k, to the mystery of how new 

window patterns are sought, and to the mysterious Importance 

of choosing a window. 

Does the divisor matter? 

The major computational effort, as measured In 

millions of multiplications or minutes of machine time, of 

any conventional careful spectral analysis is expended on 

the calculation of the sums of lagged products 

n-k 
Z(k) = 1=1  XiXi+k 
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(if these are calculated for k=0, 1, 2, ..., m, some 

(m+l)n - m(m-l)/2 ~ m-n multiplications will be required.) 

The X,. in this calculation will be raw, or nrewhitened, or 

otherwise modified observations, from which means, fitted 

polynomials) or other fitted trends may or may not have 

been subtracted.  Unless unusually careful preparatory steps 

for the elimination of very low frequencies were already 

taken in the preparation of the X., the next step after 

calculating these sums of lagged products will be adjustment 

of these sums of lagged products for means or trends.  It is 

vital to deal in practice with such adjusted sums of lagged 

products, as almost everyone who enters upon time series 

analysis seems to have to learn for himself.  (However, It 

will save space and, hopefully, promote clarity if we omit 

the word "adjusted" during the remainder of this discussion. 

We shall omit it.)  Having been told of sums of lagged 

products, every analyst of variance expects us to go on to 

mean lagged products.  Going on is inevitable. 

There is a question of the appropriate divisor. 

If we had not corrected for the mean (or any trend) there 

are cases to be made for both n and n-k.  If we had corrected 

for, say, a general linear trend (which absorbs 2 degrees of 

freedom), there are cases to be made for n, for n-2, for n-k 

and for n--k-2.  Parzen gives attention, between his (4.6) and 

(4.7), to some of the reasons for choosing n or n-2 rather 
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than n-k or n-k-2,  B;T analogy with the analysis of vari- 

ance we might feel that n-k-2 (or^ when no adjustment Is 

made, n-k) would be desirable because unbiasedness Is good. 

The unbiasedness argument is found not to be a strong one 

in the time series situation. 

Is this choice an important one for the analyst 

or Investigator whose concern is with the spectrum?  You 

should be happy to be told that the answer is "no".  If 

one's concern Is with the spectrum, then the most important 

thing about any quadratic function of the observations is 

the spectrum window which expresses the average value of 

the estimate in terms of the spectrum of the ensemble. 

(The next most Important thing is, of course, the variability 

of the quadratic function.)  This Is just what we should 

expect for a variance-component problem, where means and 

other linear combinations of the observations are without 

direct interest»  For if, in some very complex (probably 

unbalanced to begin with, and then peppered with missing 

plots) analysis of variance, one is given the values of 

certain mean squares (or other quadratic functions of the 

observations), the first question one concerned with vari- 

ance components asks is "How are the average values of these 

mean squares expressible In terms of our variance components?", 

(The question about stability "How many degrees of freedom 

should be assigned to each?" Is Important but secondary.) 
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If we know the windows associated with our spectrum esti- 

mates, we need not be concerned. In the first Instance, with 

how these estimates were obtained.  And, moreover, any linear 

combination of the results of dividing the sums of lagged 

products by n Is also a linear combination of the results of 

dividing the sums of lagged products by n-k, and vice versa. 

The practicing spectrum analyst need not be con- 

cerned with division by n or n-k, BO long as he doesn't mis- 

assemble formulas by combining some which are appropriate 

for one divisor with others appropriate for the other. 

However, those Interested In the theory of spectrum 

analysis do need to give so^e attention to this choicej 

partly because of the reasons given by Parzen, partly because 

this chclce affects just what functions of frequency the mean 

lagged products are Fourier transforms of, partly for various 

other reasons .  The man who has a practical interest in the 

autocovarlance function. If there really be such, clearly 

also has to take an Interest in alternative estimates. 

Unlikely though It may seem at first, there is a 

moderately close analogy between the biased estimates supported 

by Parzen and biased estimates which are reasonable in classical 

analysis of variance.  Consider data In a single classification 

with r observations in each class., sc that the between mean 

2     2 ? square has average value a + rar-, where a  is the error 

2 variance component, and o  is the between variance component« 
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If we wish to estimate the population average corresponding 

to a particular classification, there Is little doubt that 

the sample mean for that classification Is the most reason- 

able estimate.  But If we wish to depict the pattern of the 

population averages corresponding to all classifications, we 

should do something about the Inflation of this pattern by 

error variance; we should replace the pattern of observed 

means by a suitably shrunken pattern«  (in the simplest cases 

It may suffice to shrink each classification mean toward the 

grand mean by the factor [ra^/(a2fra^)31/2.  In others the 

method developed by Eddlngton for dealing with stellar 

statistics [Trumpler and Weaver 1953;, PP 101-104] may need 

to be applied,)  The analogy with the time series case Is 

reasonably. In fact surprisingly, close.  If we wanted to 

estimate Just one autocovarlance, we should undoubtedly use 

the unbiased estimate.  But If we are concerned with the 

pattern made by the estimated values^ with the nature of 

the autocovarlance function;, we may, as Parzen points out, 

do better to use the biased estimate. 

(The extreme Instance of the problem underlying 

this choice In the time series case arises when one 

5-mlnute record is "cross-correlated" [really cross- 

covarlanced] with another 5-mlnute stretch of the same time 

series, as recorded an hour, a day, or a week later.  If 

the spectrum of the ensemble Is relatively sharp, the average 
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value of the covarlance will still tend to zero, but the 

average value of Its square will tend, not to zero, but 

to a value depending upon the product of the 5-mlnute 

duration with the width of the spectral peak.  Thus If 

one calculates autocovarlances at lags from 24 hours 

0 minutes to 24 hours 5 minutes one will almost certainly 

find an apparently systematic wavy pattern In the unbiased 

estimates of autocovarlances or autocorrelations computed 

for a particular realization.  It is natural to believe 

that this pattern is "real", although the true average 

values of the autocovarlances are actually very, very much 

smaller in magnitude than the values found from a single 

realization»  Such patterns can be so regular as to mislead 

investigators into an unwarranted belief that the presence 

of a strikingly accurate underlying clock has been demon- 

strated. ) 

How can I construct a window? 

If we leave aside a few matters which really do 

not matter here., although some of them are very important 

elsewhere (such as adjustment for the mean, other devices 

for rejection of very low frequencies, and division by n-k 

not n), the function of lag by which the mean lagged products 

are multiplied before Fourier transformation, and the window 

(expressed in terms of CD-OJ and to+o) separately, where (x>0 

Is  the center frequency of the estimate) through which the 
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spectrum determines the average value of the estimate, are 

Fourier transforms of one another.  (if you have never 

followed a derivation of this. Just take it on faith.) 

Since every lag must be a multiple of the data interval, 

one of these functions Is a finite array of spikes, spaced 

one data Interval apart.  The other function is a polynomial 

in cos (CD-öD ) of an appropriate degree. 

While the dlscreteress of time is generally an 

Important aspect of the data, it is not important for our 

present purposes, so that we may replace the spiky lag 

window by a smooth function of a continuous variable without 

altering its Fourier transform in any way which is essential 

to the present discussion.  (Provided that we began with, 

say, at least 10-20 spikes.)  Since we are going to calcu- 

late mean lagged products for only a finite number of lags, 

this continuous lag window must vanish outside a finite 

Interval.  If it were possible, we would like to have its 

Fourier transform, the corresponding spectrum window, also 

vanish outside a finite Interval, for then the average value 

of the corresponding spectrum estimate would only Involve 

contributions from a restricted part of the spectrum. 

It is, however, well known that a function and it 

Fourier transform cannot both vanish outside finite intervals 

Indeed, they cannot both go to zero too rapidly as their 

arguments tend to infinity.  The standard example of a 

s 
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function whichj together with Its Fourier transform, goes 

to zero rapidly at Infinity Is the standard normal density 

function, which together with Its Fourier transform, goes 

to zero as the negative exponential of half the square of 

Its argument«  Unfortunately, we cannot make use of the 

normal density as a lag window, because It does not vanish 

outside a finite Interval» 

Every statistician knows^ however (or so the 

phrase goes), how to approximate a normal distribution by 

a bounded distribution.  It Is only necessary to consider 

the distribution of means of simple random samples from any 

bounded parent distribution.  And what parent distribution 

could be simpler than the rectangular (uniform) distribu- 

tion?  If we take samples of size k, the Fourier transform 

of the distribution of means will be of the form (sin u/u) , 

where u Is a multiple of co-cn , depending upon k and the 

number of lags used.  The larger Is k., the smaller are the 

minor lobes of this window In comparison with the main lobe, 

and the more lags are required to give a main lobe of pre- 

scribed narrowness»  If k=l, which corresponds to a raw 

Fourier transform of the mean lagged products, the minor 

lobes adjacent to the main lobe are about 1/3 the height 

of the main lobe (and negative), which proves to be Im- 

practical.  If k=2, which corresponds to line 1 In Parzen's 

Table 1, the minor lobes are at most l/9 the height of the 
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main lobe, and the resulting spectral window, often called 

the Bartlett window, la everywhere positive»  If Jc-4, which 

corresponds to line 8 In Parzen«s Table 1,  and to h3(u) In 

his Table 2,  the minor lobes are at most l/8l the height 

of the main lobe, and the resulting spectral window, as 

Parzen shows, is quite effective« 

It would be perfectly possible to use k=8 or k=l6 

if we wished even lower minor lobes«  The cost to us of doing 

this would be twofold.  There would have to be an Increase 

in computational effort in order to provide mean lagged 

products for the additional lags required to give a main 

lobe of comparable width.  And the shapes of the main lobes 

would be somewhat less favorable, since the process of 

raising the window to a higher and higher power will make 

both the minor lobes and the lower portions of the main lobe 

still lower.  As a result the main lobe will "occupy" a 

smaller and smaller part of the frequency band between the 

zeroes (of the window) which define it, and, consequently, 

the variability of the corresponding estimate (leakage 

aside) will be greater than that of an estimate with a more 

"blocky" spectrum window. 

As Is clear from Parzen's paper, these are not the 

on.Ly useful lag windows, the "cosine-arch" or "hamming" lag 

window which is proportional to "one plus cosine" being also 
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of practical Interest.  This latter window was "discovered" 

by empirical observation, and the best reason for considering 

It are the properties It Is found to have. 

(Two further easily understandable types of window 

which may sometimes prove useful may be obtained respectively, 

(l) by taking a truncated normal distribution as the lag win- 

dow, (ll) by taking a Oebys^v polynomial for the spectral 

window.  This last choice makes all minor lobes of equal 

height, and as small In comparison with the main lobe as Is 

possible for a given number of lags.  This equality of height, 

which makes the minor lobes adjacent to the main lobes lower 

than those of most other windows but makes minor lobes far 

away from the main lobes relatively higher than those of 

most other windows, seems to prove to be a disadvantage 

rather more often than It proves to be an advantage.) 

How Important Is window choice? 

We have discussed window carpentry briefly.  Now 

we need to ask what does It buy us, how much better can we 

do with a specially constructed window than with a rather 

routine one„  This question has opposite answers, depending 

on whether one relies upon his window to do everything for 

him, or not. 

If one relies solely upon windows, faces a peaky 

or steeply slanting spectrum, and Is concerned with the 

behavior of the spectrum where the density Is noticeably 
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below Its highest values, then the quality of workmanship 

and polish of the window used can easily be of the utmost 

Importance.  (During the early '50s   I spent considerable 

effort on a variety of ways to Improve windows.  The results 

have never been published because It turned out, as will 

shortly be explained, to be easier to avoid the necessity 

for their use.) 

If one applies his windows, actually or effective- 

ly, not necessarily to the original data but, whenever useful, 

to the results of simple linear modifications of the original 

data, chosen so as to depress peaks, to raise valleys, and, 

where necessary, to remove narrow peaks (which may appear 

to be "lines"), he will rarely. If ever, find any need for 

anything beyond a window of routinely good quality, such as 

the hamming or cosine arch window (or. If a slight Increase 

In variance of estimate and a substantial Increase In com- 

putational effort are worth bearing, the k=4 window described 

above).  (For discussion of techniques of linear modification 

see Blackman and Tukey 19595 Holloway 1938, and, perhaps, 

the work of the Labroustes referred to by Chapman and Bartels 

[1940, p, 992] and Blackman and Tukey [1959,  P- l80],)  In 

my own experience this sort of approach to the problem, 

which corresponds [Blackman and Tukey 1959:. P- 42] to using 

different window shapes In different frequency bands. Is 

much easier than seeking out explicit forms for very special 
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windows to meet each special situation.  Moreover [e.g. 

Blacktnan and Tukey 1959, PP. 62-63;   Tukey 1959, PP. 315-316], 

consideration of this technique leads to very helpful In- 

sights Into how the data Is best gathered In the first place. 

But each of us Is entitled to do his calculations 

as he pleases, so long as he does adjust his techniques to 

provide the amounts of precision and stringency his problems 

require„ 

VII 

COMPUTATIONAL CONSIDERATIONS 

It is important to say something about the role 

of computational efficiency and computational choices as 

considerations in time series analysis.  Computational 

considerations are particularly important in time series 

analysis, in part because of the relatively large amounts 

of data processed;, in part because of the very many multi- 

plications Involved in obtaining sums of lagged products, 

and in part for more subtle reasons.  And it Is sometimes 

hard, especially for the novice, to separate computational, 

statistical, and aims-and-purposes considerations, one from 

another.  Yet if they are not separated, neither sound 

practices nor sound advice can be understood as such, rather 

than being taken on faith. 
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Computational considerations depend very much on 

the equipment available.  Crude spectral analysis Is possible 

with paper and pencil [Blackman and Tukey 1959, PP. 151-169], 

and modestly refined computations have been done on hand 

calculators.  The beginning of effective spectrum calculation 

probably Involves the use of punched-card tabulators to obtain 

sums of lagged products (by applying progressive digitlng to 

cards obtained by off-set reproduction [Hartley 1946] and the 

conduct of all further computation on hand calculators.  The 

steps from this to fully automatized spectrum analysis on 

machines of the capacity and speed of an IBM 7090 or CDC l604 

are many and long.  The reluctance or eagerness with which 

one faces another hundred thousand multiplications depends 

very strikingly on the equipment available. 

And, consequently, so does one's attitude toward 

using many more lags to improve window shape or increase 

resolution, or toward recomputing mean lagged products when- 

ever new spectrum estimates (estimates differing In resolution, 

in window shape, in prewhitening, or in rejection filtration) 

are to be obtained from the same data.  In the economy of 

abundance which goes with modern electronic computers, I 

prefer to recompute mean lagged products when a new set of 

spectrum estimates are required, but others feel quite 

differently.  Some of the reasons for this difference can be 

made manifest, and their mention may serve to illuminate a 

variety of computational issues. 
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To recompute or not to recompute? 

First, recomputation when necessary allows the use 

of packaged, unified machine programs, which require only- 

values for a few constants and the data In order to provide 

the desired spectrum estimates.  This makes It much easier 

for those unsophisticated In time series analysis, whether 

Investigators or technical aides, to process data more easily 

and effectively.  Most data analysis Is going to be done by 

the unsophisticated.  As statisticians we have a responsibility 

to package as many techniques as possible for safe and effec- 

tive use by those who will analyze data, and who will not 

understand why the choices in the package were made wisely 

or unwisely. 

Next, and perhaps more important for the present. 

Is the absence of adequate facilities for data analysis. 

There is no data-analytic language analogous to FORTRAN or 

ALGOL, in whose terms It is easy to describe the operations 

of data-analysis, and, what is far more crucial, I know of 

no large machine Installation whose operations are adapted 

to the basic step-by-step character of most data analysis, 

in which most answers coming out of the machine will, after 

human consideration, return to the machine for further 

processing.  Neither programming languages or computer center 

operations are adapted to stepwise operation, and all of us 

who use big machines for data analysis are thus forced to 

more unified operation than might otherwise be desirable. 
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Third, and this consideration Is not related or 

restricted to big machines, stepwlse computation tends to 

produce stepwlse thinking.  I believe that stepwlse thinking 

led to the classical Schuster perlodogram, and hence to 

decades of Ineffective quiescence for frequency oriented 

analysis of time series.  The Individual steps from data 

through Intermediate results to perlodogram ordlnates seemded 

reasonable each by Itself.  And while Stumpfffs book recog- 

nized the nature of the corresponding spectral window before 

1940 [Stumpff 1937,  PP. 98-100], nothing was done to provide 

more useful estimates until people began to relate average 

values of estimates to the spectrum of the ensemble of 

which the data Is one realization.  What security we can 

have In frequency-oriented time-series analysis comes from 

over-all thinking, while many of the most threatening 

dangers come from step-by-step thinking.  Thus we often do 

very much better to apply over-all processes (which have 

been thought through ever-all, not merely stepwlse) to data 

than to apply the individual steps separately.  This view 

does not deny the great desirability of "try, look, and try 

something a little different" as the typical pattern of data 

analysis.  It merely asks that each trial, unless it is 

extremely exploratory, be thought through as a unit.  It 

does not even say that it is unwise to calculate sums of 

lagged products once and for all.  It only calls on those 
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who do so to be sure that the total processes they apply to 

data have been thought through as wholes.  It does, however, 

note that using preplanned packages Increases the chances 

that such thinking will have been done. 

Precision may matter 

Finally, there Is a question of required precision 

of arithmetic.  Let us approach this somewhat Indirectly. 

In friendly conversation5 James Durbln recently brought 

firmly to my attention that there was an alternative to first 

prehltenlng the observations and then calculating sums of 

lagged products for these modified values, remarking that 

one might. Instead calculate rather more sums of lagged 

products for the original observations, and then calculate 

the suitable simple linear combinations of these sums which 

would be Identically equal to the sums of lagged products 

for the modified observations.  This remark is surely well 

taken.  The results are algebraically identical.  And if 

spectrum estimates for the results of enough different 

prewhitenings of the same data are going to be required, 

then the computational path suggested by Durbln will surely 

have real advantages„  But it behooves us equally to con- 

sider the possible disadvantages of this alternate approach. 

Perhaps the greatest of these is the likely requirement of 

greater precision of arithmetic (although it is interesting 
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to note that. If only one set of spectrum estimates Is to 

be calculated, prewhltenlng first will even save some 

multiplications), 

This statement about accuracy sounds a little 

peculiar at first to one familiar with more classical statis- 

tical computations, but when he recalls the advantages of 

postponing divisions in calculating sums of squares of 

deviations (and in more general analysis of variance com- 

putations) he becomes aware of the practical inequivalence 

of algebraically identical forms of computation. 

An adequately prewhitened time series, at least 

one that Is a realization from an ensemble which produces 

spectrum estimates which are even a quarter as variable as 

those provided by a Gaussian ensemble (most ensembles 

arising in practice will produce estimates more variable 

than those), requires the observations to be recorded to, 

at most, only the precision offered by 1.5 to 2 decimal 

digits [Tukey 1959b, pp„ 319-320].  But one that is far from 

adequately prewhitened may require several decimal digits. 

This happens because the spread between the maximum and 

minimum observations is determined by the (areas of) peaks 

in the spectrum, while the precision necessary to avoid 

serious loss of information about the spectrum is deter- 

mined by the depths of its valleys. 
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A similar difficulty can arise In so simple a 

situation as fitting a quadratic polynomialj though there 

most statisticians would see the difficulty coming and 

evade it.  Thus If 

y^^ = 12.71 + 1,000,000 x1 + 0.03(x^-l/3) + e^^ 

_5 
where x. ranges from -1 to +1, var e. = 10  , and we seek 

to find the quadratic term by ordinary quadratic regression. 

It will not suffice to use y-values with only 7-decimal 

digits of precision, because rounding to units introduces 

deviations of up to 0.50 (which it; large compared to the 

maximum  quadratic effect of +0.02) and increases the effec- 

tive error variance by a factor of more than 8000. 

Similarly, in the time series case, if one is not 

prepared to prewhlten first, when doslrable. It is necessary 

to make provision for moderate to high precisiorT'ln input 

data, and correspondingly higher precision In, .accumulating 

sums of lagged products.  The most likely result is a program 

which computes sums of lagged products in double-precision 

arithmetic, perhaps even floating-point double-precision 

arithmetic.  This means extra effort at many stages of the 

computation. 
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No one of these four considerations rule out 

calculating sums of lagged products once and for all, but 

each exerts pressure.  The combined effect Influences me 

very much, but I must admit that they might not be as 

potent If the calculations with which I was concerned were 

to be made on quite other computing equipment. 

VIII 

OTHER INTRODUCTORY REFERENCES 

Where is the statistician to seek: further en- 

lightenment about spectral analysis?  It is hard to give 

extensive lists of highly Informative sources, bu some 

guidance may be helpful. 

One useful route for many statisticians will be 

to turn to instances where the technique has been applied, 

A list of references to recent applications can be found 

in either Tukey 1959a (pp. 408-4ll) or Tukey 1959b 

(pp. 327-330).  These lists unfortunately omitted the 

1957 Symposium at the Royal Statistical Society on the 

Analysis of Geophysical Time Series [Craddock 1957, 

Charnock 1957, Rushton and Neumann 1957, and discussion], 

where further references to geophysical applications can 

be found. 
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